

Overview of ISRU Activities at KSC, FIT, and UT-PR

Presented by Clyde Parrish

Acknowledgement

Dale Lueck, Rolando Roque, Paul Jennings, Jon Whitlow, Jan Surma, Eddie Santiago, and Lilly Fitzpatrick

July 2003

Current Projects At KSC

- Gas Separation Processes
 - Low Temperature Membranes
 - Immobilized Liquid Membranes
 - •Microencapsulated Liquid Membranes
- Oxygen Production Technologies
 - RWGS
 - Ionic Liquids
 - Molten Salts

Gases Separation Processes

- Separation Methods
 - Hollow-Fiber Membranes
 - Immobilized Liquid Membranes
 - High temperature Membranes (300 to 500 C)
 - Microencapsulated Liquid Membranes
- Applications
 - Buffer Gases for Mars
 - Water Removal from RWGS Process
 - CO₂ Removal for EVA and Spacecraft Applications
 - Regenerative Live Support
- Technical Challenges

Low-Temperature Membrane Test Bed

Capture Design for Buffer Gas at - 44° C

John F. Kennedy Space Center

SPACEPORT ENGINEERING AND TECHNOLOGY

Membrane System Design for Buffer Gas at - 44° C

Permea Second Stage 2180 cm²

Stream	1	2	3	4	5	6
% CO ₂	30	27.62	56.53	8.06	0.06	20.04
% Ar	26	26.9	15.84	34.37	37.72	29.37
% N ₂	44	45.48	27.61	57.56	62.22	50.59
Liter/hr	12.77	16.78	6.77	10.01	6	4.01
mm Hg	780	780	6	780	780	6

Sample Cell for Membrane Sheet

Immobilized Liquid Membranes

Immobilized liquid membrane preparation, structure, and sample cell

Ionic Liquids

•What are they?

- •Low melting ionic salts. By using large anions and cations, a low temperature melt with conductivity similar to molten salts can be obtained.
- •Examples include pyridinium and imidizolium cations with anions such as PF₆-, BF₄-, and many others.

Desirable Properties

- •Low temperature (177 573K).
- •High conductivity (low I*R losses).
- •Wide electrochemical window.
- Non-volatile.
- •Miscible with or high solubility for CO₂.

Microencapsulated Liquid Membrane

A microcapsule, group of microcapsules on a porous membrane, and vapors of a monomer that permeates the capsules

Ceramic Membrane Cell

Complex ceramic membranes for hydrogen Separations

Oxygen Production Technologies

- RWGS
- Ionic Liquids
- Molten Salts

RWGS Cyclic Processes with Water Electrolysis

- Reverse Water Gas Shift Reaction (RWGS)
- Desiccant Electrolysis and RWGS
- Carbon Monoxide Removal

$$CO_2 + H_2 \longrightarrow CO + H_2O$$

 $H_2O \longrightarrow H_2 + \frac{1}{2}O_2$

RWGS Process Flow Diagram

Cascade RWGS Reactor

John F. Kennedy Space Center

SPACEPORT ENGINEERING AND TECHNOLOGY

Base Case for Staged Simulations

	Stage1	Stage2	Stage3	Stage4	Stage5	Stage6
Reactor Temperature(C)	400	400	400	400	400	400
Condenser Temperature(C)	5	5	5	5	5	5
Reactor Pressure (psia)	80	64	48	32	20	12
Membrane Delta P (psia)	16	16	16	12	8	8
Permeate Delta P (psia)	0.15	0.21	0.36	0.70	1.31	3.28
Permeate CO ₂ Sweep (slpm)	3	3	3	3	3	3
H ₂ Reactor Feed (slpm)	4	2.50	1.38	0.60	0.16	0.01
CO Reactor Feed (slpm)	0.000	0.147	0.101	0.053	0.012	0.002
H ₂ in Reject (slpm)	0.00006	0.00007	0.00013	0.00358	0.00212	0.00008
CO in Reject (slpm)	1.35638	1.15943	0.83380	0.47623	0.15234	0.01543
Overall H ₂ Conversion	37.44	65.28	84.92	95.90	99.50	99.84

Molten Carbonate Electrolysis of CO2

Anode Reaction

$$2 \text{ CO}_3^{-2} \leftrightarrow 2 \text{ CO}_2 + \text{O}_2 + 4\text{e}^{-1}$$

Cathode Reaction

$$4e^- + 4 CO_2 \leftrightarrow 2 CO + 2 CO_3^{-2}$$

Overall Reaction

$$2 \text{ CO}_2 \leftrightarrow \text{CO} + \text{O}_2$$

Ionic Liquids for Carbon Dioxide Electrolysis

- Ionic liquids allow lower processing temperatures
- Organic polymers can be used for gaskets and stainless steel for cells
- Wide electrochemical window
- Good mobility of ionic species
- Low temperature Reactions
 - Anode Reaction

$$CO_2 + 4 e^- \rightarrow C + 2 O^{-2}$$

Cathode Reaction

$$2 O^{-2} \rightarrow O_2 + 4 e^{-1}$$

Overall Reaction

$$CO_2 \rightarrow C + O_2$$

• Carbon removal from ionic liquid